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Basics of Technicolor

Technicolor (TC) is an asymptotically free vectorial gauge theory with gauge group
GTC, which we will take to be SU(NTC), and a set of fermions {F} transforming
according to some representation(s) of GTC. The TC interaction becomes strong at a
scale ΛTC of order the electroweak scale, confining and producing technifermion
condensates, yielding dynamical electroweak symmetry breaking (EWSB) (Weinberg,
Susskind, 1979).

Motivations:

- In contrast to the Standard Model (SM), where the EWSB is put in by hand, via
µ2 < 0 in the Higgs potential V = µ2φ†φ+ λ(φ†φ)2, in TC the EWSB is an
automatic result of the technifermion condensate formation.

- In two previous cases where fundamental scalar fields were used to model spontaneous
symmetry breaking, the actual underlying physics did not involve fundamental scalar
fields but instead bilinear fermion condensates:

(i) Superconductivity: Ginzburg-Landau free energy functional used complex scalar field
φ, but the actual origin of SC is the dynamical formation of a condensate of Cooper
pairs.



(ii) The σ model for spontaneous chiral symmetry breaking (SχSB) in hadronic physics
attributed this to the vev of a scalar field, σ, but the actual origin of SχSB in QCD is
the dynamical formation of a 〈q̄q〉 condensate.

Indeed, this 〈q̄q〉 condensate in QCD breaks EW symmetry, although the scale, fπ, is
10−3 of the EWSB scale of ∼ 250 GeV. (A gedanken world in which this EWSB by
QCD were the only source of EWSB would have many exotic properties; see, e.g.,
Quigg and RS, Phys. Rev. D 79, 096002 (2009)).

Another motivation: since there are no fundamental scalar fields in TC, there is no
hierarchy problem.

For TC model-building, we arrange that left-handed technifermions form one or more
SU(2)L doublets, with some weak hypercharge, and with corresponding right-handed
components. A minimal choice is to restrict to one SU(2)L doublet,
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where F1, F2 transform (vectorially) according to some rep. R of the TC gauge group.
In general, a model may also contain technifermions that are SM singlets (e.g., to get
walking behavior). Typically, the Lagrangian masses of technifermions are taken to be
zero, although they may be nonzero if they are EW-singlets.



The SU(NTC) TC theory is asymptotically free, so as energy scale decreases, αTC
increases, eventually producing condensates; for generic NTC, these are 〈F̄1F1〉,
〈F̄2F2〉 transforming as Iw = 1/2, |Y | = 1, breaking EW symmetry at ΛTC.

Just as in the QCD example above, the W and Z pick up masses, but now involving
the TC scale:

m2
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g2 F 2
TCND

4
, m2
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(g2 + g′2)F 2
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satisfying the tree-level relation ρ = 1, where ρ = m2
W/(m

2
Z cos2 θW), because of

the Iw and Y of 〈F̄ F 〉. Here FTC ∼ ΛTC is the TC analogue to fπ ∼ ΛQCD and
ND = number of SU(2)L technidoublets. For minimal model, ND = 1, so
FTC = 250 GeV.



Another class of TC models that has been studied in the past uses one SM family of
technifermions (1FTC) (in fund. rep. of GTC)
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(a, τ color, TC indices) with usual Y assignments. Similar condensate formation, with
approx. equal condensates 〈F̄ F 〉 for F = Ua, Da, N, E, generating dynamical
technifermion masses ΣTC ∼ ΛTC, analogous to constituent quark mass ∼ ΛQCD in
QCD. Resultant m2

W and m2
Z given by formula above with ND = Nc + 1 = 4, so

FTC ≃ 125 GeV for 1FTC.

Several models have been studied where technifermions transform according to the
fundamental representation of GTC; also interest in models where technifermions
transform as higher reps., e.g., GTC = SU(2) with Nf = 2 adjoint reps. which can
produce walking (Sannino talk).



TC is appealing, but, by itself, is not a complete theory; to give masses to quarks and
leptons (which are technisinglets), one must communicate the EWSB in the TC sector
to these SM fermions. For this, one embeds TC in a larger, extended technicolor (ETC)
gauge theory with ETC gauge bosons transforming SM fermions into technifermions
(Dimopoulos and Susskind; Eichten and Lane, 1979-80).

An ETC theory is much more ambitious than the SM or MSSM because a successful
ETC model would predict the entries in the SM fermion mass matrices and the
resultant values of the quark and lepton masses and mixings. It would explain
longstanding mysteries like the mass ratios me/mµ, mu/md, md/ms, etc.

Not surprisingly, no fully realistic ETC model has yet been constructed, and TC/ETC
models face many stringent constraints. Some of these cause tension with various
TC/ETC models, as we will discuss.

One’s assessment of TC/ETC model-building depends on how stringently one defines
success; if one requires that the model reproduce fermion masses and mixings in detail,
then, one would be pessimistic with existing models. But if one regards these models as
having a grain of truth (dynamical EWSB), then one can be more optimistic. Clearly,
models must not conflict with flavor and precision EW constraints.



To satisfy constraints on flavor-changing neutral current (FCNC) processes, ETC gauge
bosons must have large masses. These masses are envisioned as arising from sequential
breaking of the ETC chiral gauge symmetry and typically form a hierarchy of three
scales.

Illustrative ETC breaking scales that have been used:

Λ1 ∼ 500 − 103 TeV, Λ2 ∼ 50 − 100 TeV, Λ3 ∼ few TeV,

The ETC theory is constructed to be asymptotically free, so as the energy decreases
from a high scale, ETC coupling αETC grows, eventually becomes large enough to
form condensates that sequentially break the ETC symmetry in three stages, to a
residual exact subgroup, which is the TC gauge group; so GETC ⊃ GTC.



Mass Generation Mechanism for Fermions

The ETC gauge bosons enable SM fermions, which are TC singlets, to transform into
technifermions and back. This provides a mechanism for generating SM fermion
masses. The figure shows a one-loop graph contributing to diagonal entries in mass
matrix for a SM fermion f i of the i’th generation (suppressing color indices for quarks):
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Rough estimate:

M
(f)
ii ≃
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i ]

where Mi ≃ (g
ETC

/2)Λi ≃ Λi is the mass of the ETC gauge bosons that gain mass
at scale Λi, C2(R) = quadratic Casimir invariant. With walking technicolor (WTC),
ΣTC(k) ≃ ΣTC(0)2/k for Euclidean k ≫ ΛTC in walking regime; contrast with
QCD, where Σ(k) ≃ Σ(0)3/k2 for k ≫ ΛQCD.



This gives

M
(f)
ii ≃

κC2(R) ηiΛ
3
TC

Λ2
i

where κ ≃ O(10) is a numerical factor from the integral and ηi is an RG running
factor. This is only a rough estimate, since ETC coupling is strong, so higher-order
diagrams are also important.

The sequential breaking of the ETC symmetry at the highest scale Λ1, the intermediate
scale Λ2, and the lowest scale Λ3 thus produces the generational hierarchy in the
fermion masses. Since these ETC scales enter as inverse powers in the resultant SM
fermion masses and since Λ1 is the largest ETC scale, it follows that first-generation
fermion masses are the smallest, and since Λ3 is the smallest ETC scale,
third-generation fermion masses are the largest.



There are mixings among the interaction eigenstates of the ETC gauge bosons to form
mass eigenstates. These involve mixings V j

τ → V i
τ , where i, j ∈ {1, 2, 3} and τ are

TC indices. Insertions of these on ETC gauge boson lines lead to off-diagonal elements
of the M (f) via diagrams like
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where j
τΠ

i
τ is the nondiagonal vacuum polarization tensor function representing the

ETC gauge boson mixing V i
τ → V j

τ . Diagonalization of the full SM fermion mass
matrices yields masses and mixings (e.g., Appelquist, RS, Phys. Lett. B 548, 204
(2002), Appelquist, Piai, RS, Phys. Rev. D 69, 015002 (2004)).



In models such as these in which SM fermion masses arise dynamically, there is a
prediction for the asymptotic momentum dependence of the running mass mfi(p) of a
SM fermion of generation i (Christensen, RS, Phys. Rev. Lett. 94, 241801 (2005)):
mfi(p) is constant up to Mi ≃ Λi and has the power-law decay

mfi(p) ∼ mfi(0)

Λ2
i

p2

for Euclidean momenta p ≫ Λi. Here we neglect logarithmic factors, which are
subdominant relative to this power-law falloff.

Thus, e.g., the third-generation quark masses mt(p) and mb(p) decay like Λ2
3/p

2 for
p ≫ Λ3, while the first-generation quark masses mu(p) and md(p) are hard up to
the much higher scale Λ1, eventually decaying like Λ2

1/p
2 for p ≫ Λ1.



UV to IR Evolution and Walking TC

TC models that behaved simply as scaled-up versions of QCD were excluded by their
inability to produce sufficiently large fermion masses (especially for the third generation)
without having ETC scales so low as to cause excessively large FCNC effects.

As a necessary condition to be viable, modern TC theories are designed to have a
coupling g

TC
that gets large, but runs slowly (“walks”) over an extended interval of

energy (WTC) (Holdom, Yamawaki et al., Appelquist, Wijewardhana,...).

This behavior arises naturally from an approximate IR zero of the two-loop beta
function:

β(α
TC

) =
dαTC

dt
= −

α2
TC

2π

(

b1 +
b2αTC

4π
+ O(α2

TC
)

)

where t = lnµ, with b1 > 0 - asymp. freedom. For sufficiently many technifermions,
b2 < 0, so β has a zero away from the origin at α

TC
= −4πb1/b2 ≡ α

IR
.



If Nf < Nf,cr (depending on technifermion rep. of GTC, R), as the theory evolves
from the UV to IR, α

TC
gets large, but runs slowly because β approaches this zero at

α
IR

. For TC, we want to choose Nf so that α
IR

is slightly greater than the minimal
value αcr for technifermion condensation. Then the TC theory has quasi-conformal
(walking) behavior, with a large α

TC
(µ) over an extended interval of energies µ.

As α
TC

(µ) eventually exceeds αcr at µ ∼ ΛTC, the technifermion condensate 〈F̄ F 〉
forms, the technifermions gain dynamical masses, and in the low-energy theory at
smaller µ, they are integrated out, so the TC beta function changes, and α

TC
evolves

away from α
IR

which is thus an approximate IR fixed point (IRFP).

For Nf > Nf,cr, the theory would evolve from the UV to the IR in a chirally
symmetric manner, without ever producing 〈F̄ F 〉, so the (initially massless)
technifermions remain massless, and the IRFP is exact. This conformal regime is of
basic field-theoretic interest, although for TC model-building, we should choose the
technifermion content so that we are in the phase with SχSB, as is necessary for
EWSB.



Walking TC has several desirable features.

• SM fermion masses are enhanced by the factor

ηi = exp

[
∫ Λi

ΛTC

dµ

µ
γ(α

TC
(µ))

]

where the TC theory has walking up to Λw; if γ ≃ 1, this yields ηi ≃ Λi/ΛTC;

• hence, one can increase ETC scales Λi for a fixed mfi, reducing FCNC effects;

• can reduce electroweak Ŝ (per doublet) relative to QCD-like value



Pioneering studies to estimate Nf,cr used Dyson-Schwinger (DS) equation for the
(techni)fermion propagator (Appelquist, Lane, Wijewardhana, Yamawaki..); for
α > αcr, this yields a nonzero solution for a dynamically generated fermion mass.
Simple ladder approx. to DS eq. gives αcrC2(R) ∼ O(1), where R is fermion rep.

As number of technifermions, Nf , increases, α
IR

decreases, and Nf ր Nf,cr as
α
IR

ց αcr. This yielded the estimate Nf,cr ≃ 4NTC.

Lattice gauge simulations provide a fully nonperturbative determination of Nf,cr and
measurement of the anomalous dimension γ that describes the running of m and the
bilinear operator, F̄ F as a function of lnµ. In recent years, intensive work using
lattice methods to determine these quantities for SU(3), SU(2), and various fermion
representations, including fundamental, adjoint, and 2-index symmetric tensor rep. with
latest results reported at this conference.



Higher-loop corrections to UV → IR evolution of a TC
gauge theory

Because of the strong-coupling nature of the physics at an approximate IRFP of interest
to TC theories, there are generically significant higher-order corrections to results
obtained from the two-loop β function.

This motivates the calculation of the location of the IR zero in β and the value of
γ = γ(α) evaluated at α = α

IR
to higher-loop order. We have done this to 3-loop

and 4-loop order (Ryttov and RS, PRD 83, 056011 (2011), arXiv:1011.4542; see also
Pica and Sannino, PRD 83,035013 (2011), arXiv:1011.5917).

Although the coefficients in the beta function at 3-loop and higher-loop order are
scheme-dependent, the results give a measure of the accuracy of the 2-loop calculation
of the IR zero, and similarly with the value of γ evaluated at this IR zero. We use the
MS scheme, for which the coefficients of β and γ have been calculated up to 4-loop
order by Vermaseren, Larin, and van Ritbergen.

The greater accuracy obtained with 3-loop and 4-loop calculations in QCD has been
amply demonstrated by the excellent fit to data that has been achieved for αs(µ) in
QCD (e.g., Bethke, Eur. Phys. J. C64, 689 (2009)).



Analytic and numerical results are presented in our paper; here we only list numerical
results. We find that for given SU(N ) (N ≡ NTC) and fermion content for which ∃
IR zero of β, the 3- and 4-loop values of α

IR
are somewhat smaller than the 2-loop

value.

Results for Nf technifermions in the fundamental rep. of SU(N ) for N = 2, 3:

N Nf αIR,2ℓ αIR,3ℓ αIR,4ℓ
2 7 2.83 1.05 1.21
2 8 1.26 0.688 0.760
2 9 0.595 0.418 0.444
2 10 0.231 0.196 0.200

3 10 2.21 0.764 0.815
3 11 1.23 0.578 0.626
3 12 0.754 0.435 0.470
3 13 0.468 0.317 0.337
3 14 0.278 0.215 0.224
3 15 0.143 0.123 0.126
3 16 0.0416 0.0397 0.0398



Similarly, we find that for given N , R, and Nf , the value of γ calculated to 3-loop and
4-loop order and evaluated at the value of α

IR
calculated to the same order is

somewhat smaller than the 2-loop value:

For Nf technifermions in R = fundamental rep. of SU(N ) for N = 2, 3:

N Nf γ2ℓ(αIR,2ℓ) γ3ℓ(αIR,3ℓ) γ4ℓ(αIR,4ℓ)
2 7 (2.67) 0.457 0.0325
2 8 0.752 0.272 0.204
2 9 0.275 0.161 0.157
2 10 0.0910 0.0738 0.0748

3 10 (4.19) 0.647 0.156
3 11 1.61 0.439 0.250
3 12 0.773 0.312 0.253
3 13 0.404 0.220 0.210
3 14 0.212 0.146 0.147
3 15 0.0997 0.0826 0.0836
3 16 0.0272 0.0258 0.0259
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Figure 1: Anomalous dimension γ for SU(2) for Nf fermions in the fundamental representation; (i) blue:

2-loop; (ii) red: 3-loop; (iii) brown: 4-loop calculation (Nf,max = 11).
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Figure 2: Anomalous dimension γ for SU(3) for Nf fermions in the fundamental representation; (i) blue:

2-loop; (ii) red: 3-loop; (iii) brown: 4-loop calculation (Nf,max = 16.5).



Some caveats: (i) as Nf decreases toward Nf,cr, αIR
gets large, so perturbative calcs.

of α
IR

and γ are less reliable. Values of γ in parentheses are unphysically large.

(ii) In the phase with confinement and SχSB, α
IR

is only an approximate IRFP and γ
is only an effective quantity describing the theory at scales µ where α is near to α

IR
.

In the conformal phase, an IRFP is exact (although our perturbative calculation of it is
only approximate), and γ describes the scaling of the bilinear F̄ F at this IRFP in a
scheme-independent manner. For Nf ≃ Nf,cr it is difficult to determine whether a
given theory is in the chirally broken or symmetric phase, e.g., with lattice methods.

Some examples of comparison with lattice measurements:

For SU(3) with Nf = 12, from the table above,

γIR,2ℓ = 0.77, γIR,3ℓ = 0.31, γIR,4ℓ = 0.25

Lattice results

γ = 0.414 ± 0.016 (Appelquist, Fleming, Lin, Neil, Schaich, PRD 84, 054501
(2011), arXiv:1106.2148, analyzing data of Kuti et al., PLB 703, 348 (2011),
arXiv:1104.3124, inferring consistency with conformality)

γ ∼ 0.35 (DeGrand, arXiv:1109.1237, also analyzing Kuti et al. data ).

So here the 2-loop value is slightly larger than, and the 3-loop and 4-loop values closer
to, these lattice measurements.



For SU(3) with Nf = 10 fermions in the fundamental rep., the perturbative
calculations up to 4-loops are less reliable, because of the larger value of α

IR
. This is

clear from the large change in γ as one goes from ℓ = 2 to ℓ = 4 loops; for the two
highest loop orders, from table above:

γIR,3ℓ = 0.65, γIR,4ℓ = 0.16

Lattice results:

0.50 < γ < 1.0 at a IRFP (Hayakawa et al.; Yamada, priv. commun. and talk at
this conf.)

Forthcoming measurements for SU(3) with Nf = 10 from other groups, including
Appelquist, Fleming, Neil.. (LSD Collab.); . Aoyama, Ikeda, Itou, Kurachi, et al...

Clearly, lattice methods are the most powerful for determining Nf,cr for various SU(N )
theories and (i) the effective behavior of γ in the vicinity of an approximate IRFP in the
chirally broken phase, of interest for walking TC theories, and (ii) the value of γ at an
exact IRFP in the conformal phase.



We have also carried out these higher-loop calculations for fermions in larger
representations. For the adjoint representation:

N αIR,2ℓ,adj αIR,3ℓ,adj αIR,4ℓ,adj
2 0.628 0.459 0.493
3 0.419 0.306 0.323

N γ2ℓ,adj(αIR,2ℓ,adj) γ3ℓ,adj(αIR,3ℓ,adj) γ4ℓ,adj(αIR,4ℓ,adj)
2 0.820 0.543 0.571
3 0.820 0.543 0.561

For SU(2) with Nf = 2 fermions in the adjoint rep., lattice results include (caution:
various groups quote uncertainties differently):

γ = 0.22 ± 0.06 (Del Debbio et al., PRD 82, 014510 (2010))

γ = 0.49 ± 0.13 (Catterall, Del Debbio et al., arXiv:1010.5909, PoS(Lat2010) 057)

γ = 0.31 ± 0.06 (DeGrand, Shamir, Svetitsky, PRD 83, 074507 (2011)

γ = 0.17 ± 0.05 (Appelquist et al., PRD 84, 054501 (2011), arXiv:1106.2148)

−0.6 < γ < 0.6 (Catterall, Del Debbio, et al., arXiv:1108.3794)



Further, we have done calculations for fermions in the symmetric and antisymmetric
rank-2 tensor representations of SU(N ), and there are studies of SU(3) with Nf = 2
fermions in the symmetric rank-2 tensor representation (sextet rep.) by DeGrand,
Shamir, Svetitsky; Kogut and Sinclair.

Lattice results on Nf,cr and quasi-conformal behavior by other groups (Deuzeman,
Lombardo, Pallante, Hasenfratz, Hietanen et al...); here we have only cited recent
measurements of γ.



Some Constraints on TC/ETC Models

Early studies of ETC by many authors, and some recent papers, have considered the TC
theory as an effective low-energy theory and added various plausible four-fermion
operators linking SM fermions and technifermions.

Part of our work has focused on constructing reasonably ultraviolet-complete ETC
models that predict the forms and coefficients of the four-fermion operators in the
effective low-energy technicolor theory. One can gain insight from these models,
bearing in mind, however, that they are not fully realistic.

ETC theories naturally gauge the generational indices of SM fermions and combine
them with TC indices. Some ETC gauge bosons thus transform SM fermions into
technifermions and vice versa. Commutators of generators of the Lie algebra for the
ETC group then also lead to ETC gauge bosons that change generations, via processes
such as f iL → f jL + V i

j and f iR → f jR + V i
j , where f i is a SM fermion of i’th

generation, and V i
j is an ETC gauge boson.



Typically, ETC is arranged to be an asymptotically free chiral gauge theory, and includes
a set of SM-singlet, ETC-nonsinglet fermions chosen so that as the scale decreases
from the deep UV, the ETC gauge coupling becomes large enough to produce
condensates of these SM-singlet fermions, which break the ETC gauge symmetry.

Since this involves strongly coupled gauge interactions, it is not precisely calculable, but
the pattern of condensate formation can be plausibly determined by the most attractive
channel (MAC) criterion. Some studies include Appelquist and Terning, PRD 50, 2116
(1994); Appelquist and Evans, PRD 53, 2789 (1996); Appelquist, Evans, Selipsky, PLB
374, 145 (1996); Appelquist and RS, PLB 548, 204 (2002); PRL 90, 201801 (2003);
Appelquist, Piai, RS, PRD 69, 015002 (2004); Christensen and RS, PRD 74, 015004
(2006); Ryttov and RS PRD 81, 115013 (2010); PRD 84, 056009 (2011).

To account for the three generations of SM fermion masses, there is a sequential
breaking of the ETC gauge symmetry, at the three scales Λi, i = 1, 2, 3. Although
the full ETC theory is chiral, we focus here on ETC models with vectorial couplings to
quarks and charged leptons, denoted VSM ETC models.

At the highest scale, Λ1, GETC breaks to HETC, and the gauge bosons in the coset
GETC/HETC gain masses ∼ g

ETC
Λ1 ∼ Λ1, and so forth for the breakings at the

two lower scales Λ2 and Λ3.



Studies of reasonably UV-complete models showed how not just diagonal, but also
off-diagonal, elements of SM fermion mass matrices could be produced, via nondiagonal
propagator corrections to ETC gauge bosons, V i

τ → V j
τ , where i, j are generation

indices and τ is a TC index (Appelquist, Piai, RS, PRD 69, 015002 (2004)).

A feature that was found in these studies of reasonably UV-complete ETC models was
the presence of approximate residual generational symmetries that naturally suppress
these ETC gauge boson propagator corrections and hence also off-diagonal elements of
SM fermion mass matrices.

Further, a possible mechanism to account for the very small neutrino masses was
presented. This made use of suppressed Dirac and Majorana neutrino masses leading to
a low-scale seesaw (Appelquist and RS, PLB 548, 204 (2002); PRL 90, 201801 (2003)).

TC/ETC theories are constrained by FCNC processes. These can be suppressed by
making the ETC breaking scales Λi sufficiently large, but this is restricted by the
requirement that one not cause excessive suppression of SM fermion masses.

One insight from studies of reasonably UV-complete ETC models was that the
approximate residual generational symmetries suppress the FCNC effects.



For example, consider K0 − K̄0 mixing and resultant KL −KS mass difference
∆mKLKS . SM contribution consistent with experimental value
∆mKLKS/mK ≃ 0.7 × 10−14.

Simple effective Lagrangian used in early studies without a UV-complete ETC theory:
Leff = c[sγµd]

2 with coefficient c ∼ 1/Λ2
ETC, usually with just a single generic

ETC scale.

Now in terms of ETC eigenstates, an sd̄ in a K̄0 produces a V 2
1 ETC gauge boson,

but this cannot directly yield a ds̄ in the final-state K0; the latter is produced by a
V 1

2 . So this requires either the ETC gauge boson mixing V 2
1 → V 1

2 or the related
mixing of ETC quark eigenstates to produce mass eigenstates.

The ETC gauge boson propagator insertion 1
2Π

2
1 required for this breaks the

generational symmetries associated with the i = 1 and i = 2 generations, and hence

|12Π
2
1|
<
∼ Λ2

2

Therefore, the contribution to K̄0 → K0 transition from V 2
1 → V 1

2 :

|c| <∼
1

Λ2
1

1
2Π

2
1

1

Λ2
1

∼
Λ2

2

Λ2
1

1

Λ2
1

≪
1

Λ2
1



With above values for Λ1 and Λ2, the suppression factor is (Λ2/Λ1)
2 ≃ 10−2. So

rather than the naive result ∆mKLKS/mK ∼ Λ2
QCD/Λ

2
1, this yields the considerably

smaller result

∆mKLKS

mK

∼
Λ2

2 Λ2
QCD

Λ4
1

∼ 10−15

which agrees with experimental limits on new-physics contributions.

Similar analysis applies to ETC contributions to a number of other FCNC processes
(D0 − D̄0, B0

d − B̄0
d, B

0
s − B̄0

s mixing, b → sγ, µ → eγ...), etc. Some studies of
FCNC constraints that take account of these approximate generational symmetries
include Appelquist, Piai, RS, PLB 593, 175 (2004); PLB 595, 442 (2004); Appelquist,
Christensen, Piai, RS, PRD 70, 093010 (2004).

It remains challenging to construct a TC/ETC model (e.g. VSM type) that does
everything that is demanded of it, including sufficient suppression of FCNC effects and
accounting for realistic quark, charged lepton, and neutrino masses and quark and
lepton mixing.



One particular aspect of this concerns achieving not just inter-generational, but also
intra-generational, mass splittings. One must explain why the quarks are heavier than
the charged leptons in each generation. One must also explain, why mc >> ms and
mt >> mb. The large mt >> mb mass splitting is especially difficult to achieve
without excessive contributions to ρ (equiv. T ).

Examples of attempts: one might try to achieve this splitting using a class of ETC
models in which left and right components of up-type quarks and techniquarks
transform the same way under SU(5)ETC but the left and right components of
down-type quarks and techniquarks transform according to relatively conjugate reps.
However, these are excluded because of excessive FCNC’s (Appelquist, Piai, RS, op.
cit., Appelquist, Christensen, and Piai, RS, op. cit.).

One might also try to use two ETC groups, arranged so that the c and t get their
masses direction via one ETC exchange, but the masses of the s and b (as well as of
the charged leptons) require mixing between the two ETC groups and hence are
suppressed (Appelquist, Evans, Selipsky, op. cit., Christensen, RS, op cit.). This can
work for t− b mass splitting, but encounters difficulties when trying to fit all of the
quark and lepton masses.



Another possible approach is to mix the b with an SU(2)L-singlet vectorlike b′, which
would require further ingredients in a UV completion.

The difficulty of explaining t− b splitting while satisfying other constraints motivated
the development of a different kind of EWSB model than conventional TC/ETC
theories, namely topcolor-assisted technicolor (TC2) theories (Hill, Bardeen, Chivukula,
Simmons, Eichten, Lane, Martin,..; antecedents go back to Nambu Jona-Lasinio
four-fermion interactions for SχSB.

TC2 models use separate asymptotically free, vectorial SU(3) gauge interactions acting
on the third generation of quarks and on the first two generations of quarks, denoted as
SU(3)1 and SU(3)2, respectively. The SU(3)1 interaction becomes sufficiently strong,
at a scale Λt of order 1 TeV, and produces a 〈t̄t〉 condensate. This condensate is
primarily responsible for the top mass.

The SU(3)1 interaction actually treats the t and b quarks in the same way and hence,
by itself, would also produce a 〈b̄b〉 ≃ 〈t̄t〉, and hence mb ≃ mt. This is prevented
by an additional set of hypercharge-type U(1)1 ⊗ U(1)2 gauge interactions; the
U(1)1 is strong and attractive (repulsive) in the t̄t (b̄b) channels.



The SU(3)1 ⊗ SU(3)2 and U(1)1 ⊗ U(1)2 symmetries are each assumed to break
to their respective diagonal subgroups, which are the usual color SU(3)c and weak
hypercharge U(1)Y groups.

It is of interest to explore ultraviolet completions of TC2 models in which one can show
that the assumed symmetry breakings occur in the desired manner. We have carried out
such a study (Ryttov and Shrock, Phys. Rev. D 82, 055012 (2010), arXiv:1006.5477).

The scale Λt is fixed in TC2 models by mt, and the scale at which SU(3)1 ⊗ SU(3)2

breaks to SU(3)c cannot be larger than this or else the SU(3)1 interaction would break
before it could produce the desired 〈t̄t〉 condensate. This yields an upper bound on the
masses of the eight massive vector bosons in the coset SU(3)1 ⊗ SU(3)2/SU(3)c of
order ∼ TeV.

TC2 models are constrained by ATLAS and CMS lower limits on axigluon (coloron)
masses up to ∼ 3 TeV. (Tevatron and LHC constraints discussed in talks by Martin,
Mishra).



TC theories are also subject to constraints from precision electroweak data, in
particular, the modification of the W and Z propagators, as described by the
parameters ∆ρ = αemT and S (discussed in talk by Schaich). Exp. allowed oval

region in (S, T ) generally has S <∼ 0.2 (depending on assumed SM mH).

A naive perturbative estimate for technifermion contributions to S is

STC,pert. ≃
dRND

6π

where dR is the dimension of the technifermion rep. under GTC, e.g., dR = NTC for
fundamental rep. However, as is well known, this perturbative estimate is not reliable,
since TC is strongly coupled at scale mZ.

If TC were QCD-like, nonperturbative effects would yield STC ≃ 2STC,pert.
(Peskin-Takeuchi, 1990), so clearly TC cannot be scaled-up QCD-like theory.

In general, the constraint from the S parameter remains a crucial and stringent one for
TC/ETC theories. Interesting recent results on S from the Lattice Strong Dynamics
Collaboration for quasi-conformal gauge theories (Schaich).



TC/ETC Model-Building with Color-Singlet
Technifermions

Much TC/ETC model-building and phenomenology have been done with one-family TC
(1FTC) (early study, Eichten, Hinchliffe, Lane, Quigg, RMP 56, 579 (1984)).

If one uses GTC = SU(2), then the TC theory has Nf = 2(Nc + 1) = 8
technifermions, which is close to estimates of Nf,cr and hence can plausibly produce
the desired walking behavior.

However, STC,pert. = 4/(3π) ≃ 0.4, so one needs strong suppression of S.

1FTC models have a very large global chiral symmetry, with many
pseudo-Nambu-Goldstone bosons (PNGBs) carrying color and charge. These models
also predict technihadrons including color-octet techni-vector mesons. ATLAS and CMS
data set limits on these for masses up to ∼ 2 TeV.

One is thus motivated to revisit the one-doublet TC (1DTC) model, which uses a
minimal technifermion content consisting of one (color-singlet) SU(2)L doublet with
corresponding right-handed components:



F τ
L =

(

F τ
1

F τ
2

)

L

with hypercharge YFL

(τ = TC index) and
F τ

1R, F τ
2R, YfiR, i = 1, 2

Electric charge is vectorial ⇔ YF1R
= YFL + 1 and YF2R

= YFL − 1.

If these two technifermions are in the fund. representation of GTC, then the model
would not have walking behavior. Approaches to getting walking: (i) include Nf,cr − 2
additional technifermions, taken to be SM-singlets; (ii) assign F1, F2 to
higher-dimensional representations of GTC, e.g., adjoint rep. of SU(2). Extensive
studies of (ii) by Sannino and coworkers.

A recent study of a model that uses method (i) is Ryttov, RS, PRD 84, 056009 (2011),
arXiv:1107.3572; further work in progress with Appelquist, Ryttov and Y. Bai.

Since certain ETC gauge bosons in a 1DTC model transform quarks into the
(color-singlet) technifermions, these ETC gauge bosons are color triplets, and hence
[GETC, GSM ] 6= 0.



In general, for this type of model, GETC ⊃ SU(3)c ⊗Ggen. ⊗GTC, where Ggen. is
the gauged generational group.

If one took the simplest choice, NTC = 2 and YFL = 0, the TC theory would be free
of anomalies in gauged currents. However, the most attractive channels would lead to
the Majorana condensates (α, β are SU(2)L indices)

〈ǫαβǫττ ′F ατ T
L CF βτ ′

L 〉, 〈ǫττ ′F τ T
1R CF τ ′

2R〉 ,

Restricting to the fundamental rep., one may thus choose an SU(3) TC gauge group.
Since this TC theory has an odd number of SU(2)L doublets, one must add another
SU(2)L doublet to avoid a global Witten anomaly:

ψL =

(

ψ1

ψ2

)

L

, ψ1R , ψ2R

This can be taken to be a singlet under both SU(3)c and SU(3)TC. One can get

STC,pert. <∼ 0.2 here. Further details in paper. This type of model is interestingly
different from one-family TC/ETC models and exhibits a number of intriguing features
that merit further study.



Conclusions

• Technicolor continues to be an interesting and well-motivated possibility for
dynamical electroweak symmetry breaking.

• Lattice simulations have made great progress in studying strongly coupled
quasi-conformal gauge theories. The knowledge gained is valuable for the
construction of walking TC theories. It is of interest to compare higher-loop
continuum calculations of γ with lattice results.

• Studies of reasonably UV-complete TC/ETC theories have yielded insights into how
to produce the observed fermion mass hierarchy (via sequential self-breaking of a
strongly coupled chiral ETC gauge symmetry) and plausibly satisfy FCNC constraints
(via residual approximate generational symmetries). However, predicting SM masses
and mixing in detail is still a difficult challenge.

• Useful to pursue further TC/ETC model-building.

• Opportune time for this research, since data from the LHC should soon elucidate the
source of electroweak symmetry breaking.


